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Dynamic linear sequence of items
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Node

item next

item: The content of the node. It could be as simple as a single value, or as complex as another data structure.
next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.
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Singly Linked List

We keep the address in memory of the first node of the list. For simplicity, we call it head or
first.

For certain implementations, it is convenient to keep the address in memory of the last node of 
the list. For simplicity, we call it tail or last.

We start an empty linked list by initializing the head address to null or nil.

item item item item…

head tail
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Insertion at the 
Front

algorithm InsertAtFront(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x

if head is null then
newnode.next ← null
return newnode

end if

newnode.next ← head
return newnode

end algorithm

The returned address in memory references to the new head of the 
singly linked list.

Populating an empty list at the front:
head ← null
head ← InsertAtFront(head, X)
head ← InsertAtFront(head, Y)
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Insertion at the 
Back (ver. 1)

algorithm InsertAtBack(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if head is null then
return newnode

end if

n ← head
while n.next is not null do

n ← n.next
end while

n.next ← newnode
return head

end algorithm

The returned address in memory references to the (maybe new) head 
of the singly linked list.
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Insertion at the 
Back (ver. 2)

algorithm InsertAtBack(tail:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if tail is null then
return newnode

end if 

tail.next ← newnode
return newnode

end algorithm

The returned address in memory references to the new tail of the 
singly linked list.
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Search

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do

if current.item = x then
return current

end if
current ← current.next

end while

return null
end algorithm

10



Delete

algorithm Delete(head:node, x:item) → node

if head is null then
return null

end if

if head.item = x then
temp ← head
head ← head.next
delete temp
return head

end if

prev ← null
current ← head
while current is not null and current.item ≠ x do

prev ← current
current ← current.next

end while

if current is not null then
prev.next ← current.next
delete current

end if

return head
end algorithm
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Singly Linked List

Q: How much space is required to keep track of 
the last node in a singly linked list?
One address: Θ 1

Q: How many operations are required to insert an 
item at the start/end of a singly linked list?
Start? New node + update addresses: Θ 1
End? Tracking last node?: Θ 1
End? Sorry, no tracking: Θ 𝑛

Q: How many operations are required to insert an 
item somewhere in a singly linked list?
Find a location + update addresses:
𝑂 𝑛 + 𝑂 1 ∈ 𝑂 𝑛

item item item item…
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public class Node<Item> 
{

// The item of the node
public Item item;

// The pointer to the next node 
// in the list
public Node<Item> next;

// Constructor of the class
public Node(Item item) 
{

this.item = item;
next = null;

}

// ... more operations
}

public class SinglyLinkedList<Item> 
{

// Pointer to the first node of the list
private Node<Item> first;

// Number of nodes of the list
private int size;

// Constructor of the class
public SinglyLinkedList() 
{

first = null;
size = 0;

}

// Insert an item at the end of the list
public void insert(Item item) 
{

if (first == null) 
{

first = new Node<Item>(item);
size += 1;
return;

}

Node<Item> n = first;

while (n.next != null) 
{

n = n.next;
}

n.next = new Node<Item>(item);
size += 1;

}

// ... more operations
}

item item item item…

Singly Linked List in Java
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Arrays vs. Linked Lists

Resizable

Easy insert at front or 
back of the list

Direct access to any 
element

No pointers (i.e., 
dynamic memory)

ProsPros

Array Linked List
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Arrays vs. Linked Lists

Space overhead due to 
pointers

No direct access to 
internal nodes

Fixed size

Enough consecutive 
space in memory

ConsCons

Array Linked List
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Java Array Lists
Array Lists are not linked lists, they are arrays

Not allowed in programming projects unless stated in the 
description file
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Doubly Linked List
02

Two memory addresses per node
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Doubly Node

item: The content of the node. It could be as simple as a single value, or as complex as another data structure.
prev: The address in memory to the previous node in the list.
next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.
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Doubly Linked List

We keep the address in memory of the first node of the list. For simplicity, we call it head or
first.

For certain implementations, it is convenient to keep the address in memory of the last node of 
the list. For simplicity, we call it tail or last.

We start an empty doubly list by initializing the head address to null, nil, or none.
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Insertion at the front
(no tail tracking)

algorithm InsertFront(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.prev ← null
newnode.next ← head

if head is not null then
head.prev ← newnode

end if

return newnode
end algorithm

The returned address in memory references to the new head of the 
doubly linked list.

Populating an empty list at the front:
head ← null
head ← InsertFront(head, X)
head ← InsertFront(head, Y)
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Insertion at the back 
(ver. 1)

(no tail tracking)

algorithm InsertBack(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if head is null then
newnode.prev ← null
return newnode

end if

n ← head
while n.next is not null do

n ← n.next
end while

n.next ← newnode
newnode.prev ← n
return head

end algorithm

The returned address in memory references to the (maybe new) head 
of the doubly linked list.
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Insertion at the back 
(ver. 2)

(tail tracking)

algorithm InsertBack(tail:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.prev ← tail
newnode.next ← null

if tail is not null then
tail.next ← newnode

end if 

return newnode
end algorithm

The returned address in memory references to the new tail of the 
doubly linked list.
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Search an item

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do

if current.item = x then
return current

end if
current ← current.next

end while

return null
end algorithm
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Delete a node
(tail tracking)

algorithm Delete(h:node, t:node, x:node) → node

if x is null then
return

end if

if x.prev is not null then
x.prev.next ← x.next

else
head ← x.next

else if

if x.next is not null then
x.next.prev ← x.prev

else
tail ← x.prev

end if

x.prev ← null
x.next ← null
delete x

end algorithm
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Doubly Linked List

Q: How much space is required to keep track of 
the last node in a doubly linked list?
One address: Θ 1

Q: How many operations are required to insert an 
item at the front/back of a doubly linked list?
Start? New node + update addresses: Θ 1
End? Tracking tail?: Θ 1
End? Sorry, no tracking: Θ 𝑛

Q: How many operations are required to insert an 
item somewhere in a doubly linked list?
Find a location + update addresses:
𝑂 𝑛 + Θ 1 ∈ 𝑂 𝑛
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Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

EOF
Do you have any questions?
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