

Note: Slides complement the discussion in class

Singly Linked List Dynamic linear sequence of items

Doubly Linked List Two memory addresses per node

Table of Contents

Dynamic linear sequence of items

4

•••

item: The content of the node. It could be as simple as a single value, or as complex as another data structure. next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.

We keep the address in memory of the first node of the list. For simplicity, we call it **head** or **first**.

For certain implementations, it is convenient to keep the address in memory of the last node of the list. For simplicity, we call it **tail** or **last**.

We start an empty linked list by initializing the head address to null or nil.

algorithm InsertAtFront(head:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x

if head is null then newnode.next ← null return newnode end if

newnode.next ← head return newnode end algorithm

. . .

Insertion at the

Front

The returned address in memory references to the new head of the singly linked list.

Populating an empty list at the front: head ← null head ← InsertAtFront(head, X) head ← InsertAtFront(head, Y)

algorithm InsertAtBack(head:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x
 newnode.next ← null

if head is null then return newnode end if

. . .

Insertion at the

Back (ver. 1)

n ← head
while n.next is not null do
 n ← n.next
end while

n.next ← newnode return head end algorithm

The returned address in memory references to the (maybe new) head of the singly linked list.

Insertion at the Back (ver. 2)

. . .

algorithm InsertAtBack(tail:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x
 newnode.next ← null

if tail is null then return newnode end if

tail.next ← newnode
 return newnode
end algorithm

The returned address in memory references to the new tail of the singly linked list.

Search

. . .

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do
 if current.item = x then
 return current
 end if
 current ← current.next
end while

return null end algorithm

. . .

. . .

Delete


```
algorithm Delete(head:node, x:item) → node
   if head is null then
      return null
   end if
   if head.item = x then
      temp ← head
      head ← head.next
      delete temp
      return head
   end if
   prev ← null
   current ← head
   while current is not null and current.item \neq x do
      prev ← current
      current ← current.next
   end while
   if current is not null then
```

```
if current is not null then
    prev.next ← current.next
    delete current
end if
```

return head end algorithm

Singly Linked List

Q: How much space is required to keep track of the last node in a singly linked list? One address: $\Theta(1)$

Q: How many operations are required to insert an item at the start/end of a singly linked list?

Start? New node + update addresses: $\Theta(1)$ End? Tracking last node?: $\Theta(1)$ End? Sorry, no tracking: $\Theta(n)$

Q: How many operations are required to insert an item somewhere in a singly linked list? Find a location + update addresses: $O(n) + O(1) \in O(n)$


```
public class SinglyLinkedList<Item>
  // Pointer to the first node of the list
  private Node<Item> first;
  // Number of nodes of the list
  private int size;
  // Constructor of the class
  public SinglyLinkedList()
     first = null;
     size = 0:
  // Insert an item at the end of the list
  public void insert(Item item)
     if (first == null)
        first = new Node<Item>(item);
         size += 1;
         return;
     Node<Item> n = first;
                                                        . . .
      while (n.next != null)
         n = n.next;
     n.next = new Node<Item>(item);
      size += 1;
  }
  // ... more operations
```

Arrays vs. Linked Lists

Array

Pros

. . .

. . .

Direct access to any element

No pointers (i.e., dynamic memory)

Linked List

Pros

Resizable

Easy insert at front or back of the list

14

Arrays vs. Linked Lists

Array

. . .

. . .

Cons

Fixed size

Enough consecutive space in memory

Linked List

Cons

Space overhead due to pointers

No direct access to internal nodes

Java Array Lists

Array Lists are not linked lists, they are arrays

Not allowed in programming projects unless stated in the description file

. . .

Two memory addresses per node

17

. . .

Doubly Node

item: The content of the node. It could be as simple as a single value, or as complex as another data structure. prev: The address in memory to the previous node in the list. next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.

We keep the address in memory of the first node of the list. For simplicity, we call it **head** or **first**.

For certain implementations, it is convenient to keep the address in memory of the last node of the list. For simplicity, we call it **tail** or **last**.

We start an empty doubly list by initializing the head address to **null, nil**, or **none**.

Insertion at the front (no tail tracking)

. . .

algorithm InsertFront(head:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x
 newnode.prev ← null
 newnode.next ← head

if head is not null then
 head.prev ← newnode
end if

return newnode end algorithm

The returned address in memory references to the new head of the doubly linked list.

Populating an empty list at the front: head ← null head ← InsertFront(head, X) head ← InsertFront(head, Y)

algorithm InsertBack(head:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x
 newnode.next ← null

if head is null then newnode.prev ← null return newnode end if

. . .

Insertion at the back

n ← head
while n.next is not null do
 n ← n.next
end while

n.next ← newnode
 newnode.prev ← n
 return head
end algorithm

The returned address in memory references to the (maybe new) head of the doubly linked list.

Insertion at the back (ver. 2) (tail tracking)

. . .

algorithm InsertBack(tail:node, x:item) → node
 let newnode be a new Node
 newnode.item ← x
 newnode.prev ← tail
 newnode.next ← null

if tail is not null then
 tail.next ← newnode
end if

return newnode end algorithm

The returned address in memory references to the new tail of the doubly linked list.

Search an item

. . .

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do
 if current.item = x then
 return current
 end if
 current ← current.next
end while

return null end algorithm

. . .

. . .

Delete a node (tail tracking)

. . .

algorithm Delete(h:node, t:node, x:node) \rightarrow node

```
if x is null then
return
end if
```

```
if x.prev is not null then
    x.prev.next ← x.next
else
    head ← x.next
else if
```

```
if x.next is not null then
    x.next.prev ← x.prev
else
    tail ← x.prev
end if
```

```
x.prev ← null
x.next ← null
delete x
```

end algorithm

Doubly Linked List

Q: How much space is required to keep track of the last node in a doubly linked list? One address: $\Theta(1)$

Q: How many operations are required to insert an item at the front/back of a doubly linked list?

Start? New node + update addresses: $\Theta(1)$ End? Tracking tail?: $\Theta(1)$ End? Sorry, no tracking: $\Theta(n)$

Q: How many operations are required to insert an item somewhere in a doubly linked list? Find a location + update addresses: $O(n) + \Theta(1) \in O(n)$

