
Linked List
CS 251 - Data Structures and 

Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
Dynamic linear sequence of 
items

Singly Linked List

Doubly Linked List
Two memory addresses per 
node

01

02



Singly Linked List
01

Dynamic linear sequence of items

4



Node

item next

item: The content of the node. It could be as simple as a single value, or as complex as another data structure.
next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.

5



Singly Linked List

We keep the address in memory of the first node of the list. For simplicity, we call it head or
first.

For certain implementations, it is convenient to keep the address in memory of the last node of 
the list. For simplicity, we call it tail or last.

We start an empty linked list by initializing the head address to null or nil.

item item item item…

head tail

6



Insertion at the 
Front

algorithm InsertAtFront(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x

if head is null then
newnode.next ← null
return newnode

end if

newnode.next ← head
return newnode

end algorithm

The returned address in memory references to the new head of the 
singly linked list.

Populating an empty list at the front:
head ← null
head ← InsertAtFront(head, X)
head ← InsertAtFront(head, Y)

7



Insertion at the 
Back (ver. 1)

algorithm InsertAtBack(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if head is null then
return newnode

end if

n ← head
while n.next is not null do

n ← n.next
end while

n.next ← newnode
return head

end algorithm

The returned address in memory references to the (maybe new) head 
of the singly linked list.

8



Insertion at the 
Back (ver. 2)

algorithm InsertAtBack(tail:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if tail is null then
return newnode

end if 

tail.next ← newnode
return newnode

end algorithm

The returned address in memory references to the new tail of the 
singly linked list.

9



Search

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do

if current.item = x then
return current

end if
current ← current.next

end while

return null
end algorithm

10



Delete

algorithm Delete(head:node, x:item) → node

if head is null then
return null

end if

if head.item = x then
temp ← head
head ← head.next
delete temp
return head

end if

prev ← null
current ← head
while current is not null and current.item ≠ x do

prev ← current
current ← current.next

end while

if current is not null then
prev.next ← current.next
delete current

end if

return head
end algorithm

11



Singly Linked List

Q: How much space is required to keep track of 
the last node in a singly linked list?
One address: Θ 1

Q: How many operations are required to insert an 
item at the start/end of a singly linked list?
Start? New node + update addresses: Θ 1
End? Tracking last node?: Θ 1
End? Sorry, no tracking: Θ 𝑛

Q: How many operations are required to insert an 
item somewhere in a singly linked list?
Find a location + update addresses:
𝑂 𝑛 + 𝑂 1 ∈ 𝑂 𝑛

item item item item…

12



public class Node<Item> 
{

// The item of the node
public Item item;

// The pointer to the next node 
// in the list
public Node<Item> next;

// Constructor of the class
public Node(Item item) 
{

this.item = item;
next = null;

}

// ... more operations
}

public class SinglyLinkedList<Item> 
{

// Pointer to the first node of the list
private Node<Item> first;

// Number of nodes of the list
private int size;

// Constructor of the class
public SinglyLinkedList() 
{

first = null;
size = 0;

}

// Insert an item at the end of the list
public void insert(Item item) 
{

if (first == null) 
{

first = new Node<Item>(item);
size += 1;
return;

}

Node<Item> n = first;

while (n.next != null) 
{

n = n.next;
}

n.next = new Node<Item>(item);
size += 1;

}

// ... more operations
}

item item item item…

Singly Linked List in Java

13



Arrays vs. Linked Lists

Resizable

Easy insert at front or 
back of the list

Direct access to any 
element

No pointers (i.e., 
dynamic memory)

ProsPros

Array Linked List

14



Arrays vs. Linked Lists

Space overhead due to 
pointers

No direct access to 
internal nodes

Fixed size

Enough consecutive 
space in memory

ConsCons

Array Linked List

15



Java Array Lists
Array Lists are not linked lists, they are arrays

Not allowed in programming projects unless stated in the 
description file

16



Doubly Linked List
02

Two memory addresses per node

17



Doubly Node

item: The content of the node. It could be as simple as a single value, or as complex as another data structure.
prev: The address in memory to the previous node in the list.
next: The address in memory to the next node in the list.

We use variables to store the address in memory of a node.

18

item nextprev



Doubly Linked List

We keep the address in memory of the first node of the list. For simplicity, we call it head or
first.

For certain implementations, it is convenient to keep the address in memory of the last node of 
the list. For simplicity, we call it tail or last.

We start an empty doubly list by initializing the head address to null, nil, or none.

19

item item item item…

head tail



Insertion at the front
(no tail tracking)

algorithm InsertFront(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.prev ← null
newnode.next ← head

if head is not null then
head.prev ← newnode

end if

return newnode
end algorithm

The returned address in memory references to the new head of the 
doubly linked list.

Populating an empty list at the front:
head ← null
head ← InsertFront(head, X)
head ← InsertFront(head, Y)

20



Insertion at the back 
(ver. 1)

(no tail tracking)

algorithm InsertBack(head:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.next ← null

if head is null then
newnode.prev ← null
return newnode

end if

n ← head
while n.next is not null do

n ← n.next
end while

n.next ← newnode
newnode.prev ← n
return head

end algorithm

The returned address in memory references to the (maybe new) head 
of the doubly linked list.

21



Insertion at the back 
(ver. 2)

(tail tracking)

algorithm InsertBack(tail:node, x:item) → node
let newnode be a new Node
newnode.item ← x
newnode.prev ← tail
newnode.next ← null

if tail is not null then
tail.next ← newnode

end if 

return newnode
end algorithm

The returned address in memory references to the new tail of the 
doubly linked list.

22



Search an item

algorithm Search(head:node, x:item) → node

current ← head
while current is not null do

if current.item = x then
return current

end if
current ← current.next

end while

return null
end algorithm

23



Delete a node
(tail tracking)

algorithm Delete(h:node, t:node, x:node) → node

if x is null then
return

end if

if x.prev is not null then
x.prev.next ← x.next

else
head ← x.next

else if

if x.next is not null then
x.next.prev ← x.prev

else
tail ← x.prev

end if

x.prev ← null
x.next ← null
delete x

end algorithm

24



Doubly Linked List

Q: How much space is required to keep track of 
the last node in a doubly linked list?
One address: Θ 1

Q: How many operations are required to insert an 
item at the front/back of a doubly linked list?
Start? New node + update addresses: Θ 1
End? Tracking tail?: Θ 1
End? Sorry, no tracking: Θ 𝑛

Q: How many operations are required to insert an 
item somewhere in a doubly linked list?
Find a location + update addresses:
𝑂 𝑛 + Θ 1 ∈ 𝑂 𝑛

25

item item item item…

head tail



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

EOF
Do you have any questions?

26

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Linked List
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Singly Linked List
	Slide 5: Node
	Slide 6: Singly Linked List
	Slide 7: Insertion at the Front
	Slide 8: Insertion at the Back (ver. 1)
	Slide 9: Insertion at the Back (ver. 2)
	Slide 10: Search
	Slide 11: Delete
	Slide 12: Singly Linked List
	Slide 13
	Slide 14: Arrays vs. Linked Lists 
	Slide 15: Arrays vs. Linked Lists 
	Slide 16: Java Array Lists
	Slide 17: Doubly Linked List
	Slide 18: Doubly Node
	Slide 19: Doubly Linked List
	Slide 20: Insertion at the front (no tail tracking)
	Slide 21: Insertion at the back (ver. 1) (no tail tracking)
	Slide 22: Insertion at the back (ver. 2) (tail tracking)
	Slide 23: Search an item
	Slide 24: Delete a node (tail tracking)
	Slide 25: Doubly Linked List
	Slide 26: EOF

